For my cutting board project I constructed the image above using a compass and straightedge like Euclid did. The main constructions I used were a circle, perpendicular bisectors, copying a segment, and copying an angle. I constructed it by hand and then constructed it on the computer using Adobe Illustrator. I preferred the more modern tool of Illustrator because it was more precise but I do see the value of getting to use new tools like compasses and straightedges.

In this project I investigated how I could mathematically:

1. Model the nutritional changes from seed to loaf to better understand the scientific processes at work in each of these steps (using linear and exponential piecewise functions)
2. Use bakers percentages, precise measurements, and thoughtful trial and error to create our best loaf of bread
3. Model the visual changes from seed to loaf using rigid motions
4. Use the constraints of geometric constructions to design an aesthetically

This bead was awful. We added too much yeast which really messed up the flavor of our bread. The reason why, is because there is limit of yeast you can put in your dough or the yeast will eat itself, and give the bread a beer like flavor.

This loaf was the most successful. The flavors in our bread were balanced. We only used sour dough starter. We mixed in rosemary, we also made sure the dough had olive oil and fancy salt all over its surface before we baked it to give it a nice browned crust.
Stages of Carbs

From seed to sheave the amount of carbohydrates increased, this means the slope is positive.

From sheave to flour the slope is negative because the carbohydrates have decreased.

From flour to bread the slope is at zero because the carbohydrates are not increasing or decreasing, they stay at 8%.

\[f(x) = \begin{cases}
15x+11, & \{1 < x < 2\} \\
10x+1, & \{2 < x < 3\} \\
-21x+92, & \{3 < x < 4\} \\
0x+8, & \{4 < x < 7\}
\end{cases} \]